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Numerical Solution of Burger’s equation via   
Cole-Hopf transformed diffusion equation   
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Abstract—A numerical method for solving Burger’s equation via diffusion equation, which is obtained by using  Cole-Hopf  transformation,  
is  presented.  We  compute  the  solution  for  transformed diffusion equation using explicit and implicit finite difference schemes and then 
use backward Cole-Hopf transformation to attain the solution for Burger’s equation. This work also studies accuracy and numerical feature 
of convergence of the proposed method for specific initial and boundary values by estimating their relative errors. 

Index Terms— Burger’s equation, Cole-Hopf  transformation, Diffusion equation, Discretization, Explicit scheme, Heat equation, Implicit 
scheme,  Numerical solution,  Neumann boundary condition 
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1 INTRODUCTION                             

HE one-dimensional Burger’s equation has received an 
enormous amount of attention since the studies by J.M. 
Burger’s in the 1940’s, principally as a model problem 

of the interaction between nonlinear and  dissipative 
phenomena.  

The Burger’s equation is nonlinear and one expects to 
find Phenomena similar to turbulence. However, as  it  has  
been  shown  by  Hopf[2]  and  Cole[3],  the  homogeneous  
Burger’s  equation  lacks  the  most important property 
attributed to turbulence: The solutions do not exhibit 
chaotic features like sensitivity with  respect  to  initial  
conditions.  This  can  explicitly shown  using  the    Cole-
Hopf  transformation  which transforms  Burger’s  equation  
into  a  linear  parabolic  equation.  From  the  numerical  
point  of  view, however,  this  is  of  importance  since  it  
allows  one  to  compare  numerically  obtained  solutions  
of  the nonlinear  equation with the  exact  one.  This  
comparison is important  to  investigate  the  quality  of  the 
applied numerical schemes. 

 
In  this  paper,  we  present  the  analytical  solution  of  

one-dimensional  Burger’s  equation  as  an  initial value 
problem in infinite spatial domain. Then we solve the 
diffusion equation, obtained from Burger’s equation 
through Cole-Hopf transformation, using explicit and 
implicit finite difference schemes.  Using solution data of 
the diffusion equation, we find solution for Burger’s  
equation through backward Cole Hope transformation.   

Then  we  find  relative  errors  of  the  numerical 
methods  to  determine  the  accuracy  of  numerical 
methods.   

 

2   BURGER’S EQUATION AS AN IV PROBLEM                           
We consider the  Burger’s equation as an initial value 

problem[7]  𝜕𝜕
𝜕𝜕 

+ 𝜕
𝜕𝜕
𝜕𝜕

= 𝜈
𝜕2𝜕
𝜕𝜕2

                                                  (1) 
 

with I.C. 𝜕(𝜕, 0) = 𝜕0(𝜕), for−∞ < 𝜕 < ∞      (2) 

3   ANALYTICAL SOLUTION OF BURGER’S EQUATION 
After solving heat equation obtained from C-H(Cole Hopf) 
transformation and then using backward C-H 
transformation [3,4,9], we obtain following analytical 
solution of Burger’s equation: 

𝜕(𝜕, 𝜕) =
∫ (𝜕 − 𝑦) 𝑒𝜕𝑒 �− (𝑥−𝑦)2

4𝜈𝑡
− 1

2𝜈 ∫ 𝜕0(𝑧)𝑑𝑧𝑦
0 �𝑑𝑦∞

−∞

𝜕 ∫ 𝑒𝜕𝑒 �− (𝑥−𝑦)2

4𝜈𝑡
− 1

2𝜈 ∫ 𝜕0(𝑧)𝑑𝑧𝑦
0 �𝑑𝑦∞

−∞

         (3) 

4 Numerical evaluation of Analytical 
solution 

We consider the bounded periodic function u0(x) = sin x as 
initial condition and find the solution over the bounded 
spatial domain [0,2π] at different time steps.  

For the above initial condition we get the following 
analytical solution of Burger’s equation, 

𝜕(𝜕, 𝜕) =
∫ (𝜕 − 𝑦) 𝑒𝜕𝑒 �− (𝑥−𝑦)2

4𝜈𝑡
+ 1

2𝜈
𝑐𝑐𝑐 𝑦� 𝑑𝑦∞

−∞

𝜕 ∫ 𝑒𝜕𝑒 �− (𝑥−𝑦)2

4𝜈𝑡
+ 1

2𝜈
𝑐𝑐𝑐 𝑦� 𝑑𝑦∞

−∞

                    (4) 

For very small ν, both numerator and denominator of (4) 
get more closed to zero or infinity which becomes very 
difficult to handle. So considering the value of ν arbitrarily 
very small, we cannot perform our numerical experiment. 

We consider the value of ν as 0.1. 
Again, for very small t, both numerator and 

denominator get much closed to zero and thus difficult to 
handle numerically. 

We have found that for minimum value 0.1 of 𝜕 the 

T 
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calculation is possible. 

 

5 COLE-HOPF TRANSFORMATION  
(1) can be linearized by Cole-Hopf transformation[3,4] 

 
u(x, t) = −

2ν𝜙x
𝜙

                                                 (5) 
 
We perform the transformation in two steps.  
First let us assume 

u = Ψx 
With this transformation (5) becomes, 

Ψxt + ΨxΨxx = νΨxxx 
 

⇒ Ψxt +
∂
∂x�

1
2
Ψx
2� = νΨxxx 

 
Which on integration w.r.to. x gives 
 

Ψt +
1
2
Ψx
2 = νΨxx                                                    (6) 

 
Then we make the transformation 

Ψ = −2ν lnϕ 
which turns (6) into  

𝜙t = ν𝜙xx 
which is the well-known first order pde called heat or 

diffusion equation. 
Solving (5) for 𝜙, we have,  
 

𝜙(x, t) = Ce−
1
2ν∫udx 

For t = 0,  
𝜙(x, 0) = Ce−

1
2ν∫ u0dx 

From (5) it is clear that C has not effect on our final 

solution of Burger’s equation. 
 
So we can consider Φ(x, 0) as  
 

𝜙(x, 0) = e−
1
2ν∫ u0(z)dzx

0 = 𝜙0(x)(let) 
 

6 Cole-Hopf transformed diffusion 
equation 

 After Cole-Hopf transformation our problem turns into 
the following Cauchy problem for the Heat Equation. 

𝜙t = ν𝜙xx                                                             (7) 
 

𝜙(x, 0) = 𝜙0(x) = e−
1
2𝜈∫ 𝑢0(𝑧)𝑑𝑧𝑥

0                      (8) 
For initial condition u0(x) = sin x, the initial condition 

of new problem is  
𝜙(x, 0) = e−

1
2ν∫ sin zdzx

0 = e
cosx
2𝜈  

Now to obtain the transformed boundary condition, we 
consider the boundary condition of u as 

u(0, t) = 0 = u(2π, t)                                        (9) 
Using these boundary condition in  
 

u(x, t) = −2ν
𝜙x
𝜙

 
We obtain,  
 𝜙x(0, t)

𝜙
= 0 =

𝜙𝑥(2𝜋, 𝜕)
𝜙

                                         (10) 
 
Solving (5) for 𝜙, we have, 
 
𝜙(x, t) = Ce−

1
2ν∫udx, where C is integrating constant 

which guarantees us that 𝜙 does not vanish for every 
choices of 𝜕 and 𝜕 unless we choose 𝐶 as zero (which we 
should not choose because for 𝐶 = 0, singularity occurs in 
calculating the value of 𝜕 at each point) 

Since 𝜙 does not vanish for every choices of 𝜕 and  , so 
from (10), we have 

𝜙x(0, 𝜕) = 0 = 𝜙x(2π, t) 
So finally we have obtained the following problem 

concerning diffusion equation as an Initial-Boundary value 
problem with Neumann boundary conditions. 

𝜙𝑡 = 𝜈𝜙xx                                                               (11) 
 𝐼.𝐶.𝜙(𝜕, 0) = 𝑒

cos𝑥
2𝜈              

𝐵.𝐶.𝜙x(0, t) = 0 = 𝜙x(2π)                              (12)  
 
 

7 An explicit scheme to solve Diffusion 
equation with Neumann boundary 
conditions: 
 

To find an explicit scheme, we discretize the 𝜕 − 𝜕 plane 
by choosing a mesh width ℎ ≡ Δ𝜕 and a time step 𝑘 ≡ Δ𝜕, 
and define the discrete mesh points (𝜕𝑖 , 𝜕𝑛) by  

𝜕𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0,1, … … …𝑀 
𝑎𝑎𝑑 𝜕𝑛 = 𝑎𝑘,𝑎 = 0,1, … … …𝑁 

Where,  
𝑀 =

𝑏 − 𝑎
ℎ

 𝑎𝑎𝑑 𝑁 =
𝑇
𝑘

 
 
 

 

(a) Analytical solution of Burger’s equation at 𝜕 = 0.1 

 

(b) Analytical solution of Burger’s equation at 𝜕 = 1,3,5 

Fig. 1. Analytical solution of Burger’s equation at different time 
steps. 
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We discretize 𝜕𝜙

𝜕𝑡
 and 𝜕

2𝜙
𝜕𝑥2

 at any discrete point (𝜕𝑖 , 𝜕𝑛) as 
follows: 

 𝜕𝜙
𝜕𝜕

≈
𝜙𝑖𝑛+1 − 𝜙𝑖𝑛

𝑘
                                          (13) 

 𝜕2𝛷
𝜕𝜕2

=
𝜙𝑖+1𝑛 − 2𝜙𝑖𝑛 +𝜙𝑖−1𝑛

ℎ2
                               (14) 

 
Inserting (13) and (14) in (11), our discrete version of 

diffusion equation formulates as the second order finite 
difference scheme of the form: 

 𝜙𝑖𝑛+1 − 𝜙𝑖𝑛

𝑘
= 𝜈

𝜙𝑖+1𝑛 − 2𝜙𝑖𝑛 + 𝜙𝑖−1𝑛

ℎ2
                          (15) 

 
where 𝜙𝑖𝑛 is the value of 𝜙 at the point (𝜕𝑖 , 𝜕𝑛) in 𝜕 − 𝜕 

plane.  
 
(15) can be rewritten as  

𝜙𝑖𝑛+1 = (1 − 2𝛾)𝜙𝑖𝑛 + 𝛾(𝜙𝑖+1𝑛 + 𝜙𝑖−1𝑛 )                     (16) 
where, 𝛾 = 𝜈𝑘

ℎ2
 

 
Since we have given Neumann boundary conditions, so 

we are not been able to find boundary values directly. 
But the derivatives of 𝜙 w.r.t. 𝜕 vanishes at boundary 

points for each time step 𝜕𝑛.  
 
So we can consider that the values of 𝜙 at two points 

(one is boundary and the other is the nearest point of 
boundary according to our discretisation) for each 
boundary are same at each time step which comes from the 
following fact: 

 𝜙1𝑛 − 𝜙0𝑛

ℎ
=
𝜙𝑀𝑛 − 𝜙𝑀−1𝑛

ℎ
= 0      

 
⇒ 𝜙1𝑛 = 𝜙0𝑛  𝑎𝑎𝑑  𝜙𝑀𝑛 = 𝜙𝑀−1𝑛                           (17) 

Now we have given initial values 𝜙𝑖0.  
To calculate the values 𝜙11,𝜙21,𝜙31, … … … … . . ,𝜙𝑀−11 , we 

put 𝑎 = 0, in (16) and get  
𝜙𝑖1 = (1− 2𝛾)𝜙𝑖0 + 𝛾(𝜙𝑖+10 + 𝜙𝑖−10 )                  (18) 

Inserting 𝑖 = 1,2,3, … … . . ,𝑀 − 1 in (18), we get the values 
𝜙11,𝜙21,𝜙31, … … … ,𝜙𝑀−11  and to obtain 𝜙01 and 𝜙𝑀1  , we replace 
𝑎 by 1 in (17) and find  

𝜙11 = 𝜙01 𝑎𝑎𝑑 𝜙𝑀1 = 𝜙𝑀−11  
After calculating the values of 𝜙 at 𝜕1, we can find the 

values of 𝜙 at 𝜕2 using the same process.  
Now let values of 𝜙 at all discretized points have been 

calculated for 𝜕 = 𝜕𝑛. 
Then using (16), we can calculate 

𝜙1𝑛+1,𝜙2𝑛+1,𝜙3𝑛+1, … … … … ,𝜙𝑀−1𝑛+1  and we use (17) to calculate 
the boundary values 𝜙0𝑛+1 and 𝜙𝑀𝑛+1. 

Proceeding in this way, we finally obtain the values of 𝜙 
at each of our discretized point.  

Choosing 𝜈 = 0.1, ℎ = 0.1 and 𝑘 = 0.01, we have 
performed the explicit scheme for 𝜕 = 0 to 5 
 

 
 
 
8 An implicit scheme to solve heat 
equation with Neumann boundary 
condition 
 

To obtain an implicit scheme, we discretize 𝜕𝜙
𝜕𝑡

 and 𝜕
2𝜙
𝜕𝑥2

 at 
any discrete point (𝜕𝑖 , 𝜕𝑛+1)  as follows:- 

 𝜕𝜙
𝜕𝜕

≈
𝜙𝑖𝑛+1 − 𝜙𝑖𝑛

𝑘
                                                       (19) 

 𝜕2𝜙
𝜕𝜕2

=
𝜙𝑖+1𝑛+1 − 2𝜙𝑖𝑛+1 + 𝜙𝑖−1𝑛+1

ℎ2
                                 (20) 

 
 
Inserting (19) and (20) in (11), the discrete version of our 

diffusion equation formulates as the second order finite 
difference scheme of the form 

 𝜙𝑖𝑛+1 − 𝜙𝑖𝑛

𝑘
= 𝜈

𝜙𝑖+1𝑛+1 − 2𝜙𝑖𝑛+1 +𝜙𝑖−1𝑛+1

ℎ2
                           (21) 

 
Where 𝜙𝑖𝑛 is the value of 𝜙 at the point (𝜕𝑖 , 𝜕𝑛) in 𝜕 − 𝜕 

plane.  
(21) can be rewritten as  

(1 + 2𝛾)𝜙𝑖𝑛+1 − 𝛾(𝜙𝑖+1𝑛+1 + 𝜙𝑖−1𝑛+1) = 𝜙𝑖𝑛                         (22) 
 
Where, 𝛾 = 𝜈𝑘

ℎ2
 

Since we have given Neumann boundary conditions, so 
we have not been able to find boundary values directly as 
discussed in the previous section. From (17), we have the 
following relations 

𝜙1𝑛 = 𝜙0𝑛  𝑎𝑎𝑑  𝜙𝑀𝑛 = 𝜙𝑀−1𝑛                                              (23) 
     Now we have given the initial values ϕi

0. 
     To calculate the values of ϕ11,ϕ2

1 ,ϕ3
1 , … … … … . . ,ϕM−1

1 . We 
put n = 0 in (22) and get  

(1 + 2𝛾)𝜙𝑖1 − 𝛾(𝜙𝑖+11 +𝜙𝑖−11 ) = 𝜙𝑖0                               (24) 
     Inserting i = 1,2,3, … … … . . , M− 1 in (24) and using (23), 
we get the following linear system of 𝑀− 1 equations in 
𝑀− 1 variables- 

(1 + 𝛾)𝜙11 − 𝛾𝜙21 = 𝜙10

−𝛾𝜙11 + (1 + 2𝛾)𝜙21 − 𝛾𝜙31 = 𝜙20

−𝛾𝜙21 + (1 + 2𝛾)𝜙31 − 𝛾𝜙41 = 𝜙30
… … … … … … … …
… … … … … … … …

−𝛾𝜙𝑀−31 + (1 + 2𝛾)𝜙𝑀−21 − 𝛾𝜙𝑀−11 = 𝜙𝑀−20

−𝛾𝜙𝑀−21 + (1 + 𝛾)𝜙𝑀−11 = 𝜙𝑀−10 ⎭
⎪
⎪
⎬

⎪⎪
⎫

              (25) 

     The above system can be written as  
𝐴𝜕 = 𝑏                                                                        (26) 

Where,  

𝐴 =

⎝

⎜
⎜
⎛

1 + 𝛾 −𝛾 0 ⋯ … 0
−𝛾 1 + 2𝛾 −𝛾 ⋱  ⋮
0 −𝛾 1 + 2𝛾 −𝛾 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮  ⋱ −𝛾 1 + 2𝛾 −𝛾
0 … … 0 −𝛾 1 + 𝛾⎠

⎟
⎟
⎞

, 

 
𝑋 = (𝜙11,𝜙21,𝜙31, … … … . . ,𝜙𝑀−21 ,𝜙𝑀−11 )𝑇 
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and 
𝑏 = (𝜙10,𝜙20,𝜙30, … … ,𝜙𝑀−20 ,𝜙𝑀−10 )𝑇 

Solving (26), we get 
𝑋 = (𝜙11 𝜙21 𝜙31 … … 𝜙𝑀−21 𝜙𝑀−11 ) and so the 

values 𝜙11,𝜙21,𝜙31, … … … … . ,𝜙𝑀−11  and to obtain 𝜙01 and 𝜙𝑀1 , 
we replace 𝑎 by 1 in (23) and find  

𝜙11 = 𝜙01  𝑎𝑎𝑑  𝜙𝑀1 = 𝜙𝑀−11  
So we have been able to calculate values of 𝜙 at all 

discretized points for 𝑎 = 1. 
After calculating the values of 𝜙 at 𝜕1, one can find the 

values of 𝜙 at 𝜕2 using the same process. 
Proceeding in this way, we finally obtain the values of 𝜙 

at each of our discretized point. 
Choosing 𝜈 = 0.1, ℎ = 0.1 and 𝑘 = 0.01, we have 

performed the implicit scheme for t = 0 to 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
9 Calculation of derivatives of 𝝓 w.r.t. 𝒙 
at different discretized points 

 
Since the derivatives of ϕ have to be taken w. r. t. x , so 

we just consider the values of ϕ at a fixed time and then 
calculate the values of ϕx from that data. 

At any discretized time 𝜕 = 𝜕𝑛, the values 𝜙𝑖𝑛 are known.  
Let 𝐷𝜙𝑖𝑛 denote the derivative of 𝜙 at (𝜕𝑖 , 𝜕𝑛). 
Then 𝐷𝜙𝑖𝑛 can be calculated from the first order centered 

difference formula:- 
 𝜕𝜙

𝜕𝜕
≈
𝜙𝑖+1𝑛 − 𝜙𝑖−1𝑛

2ℎ
                                                  (27) 

 
So we define 

𝐷𝜙𝑖𝑛 =
𝜙𝑖+1𝑛 − 𝜙𝑖−1𝑛

2ℎ
                                               (28) 

 
The derivatives 𝐷𝜙0𝑛 and 𝐷𝜙𝑀𝑛  at the end points are 

known.  
The other derivatives 𝐷𝜙1𝑛 ,𝐷𝜙2𝑛 ,𝐷𝜙3𝑛 , … … … … … . ,𝐷𝜙𝑀−1𝑛  

can be calculated by putting 𝑖 = 1,2,3, … … … ,𝑀 − 1  in (28). 
For 𝜈 = 0.1, ℎ = 0.1, 𝑘 = 0.01 the values of 𝜙𝑥  are 

pictorized in figure.  
 

 

 
10 Calculating the required solution 

 
Once the values of 𝜙 and 𝜙𝑥  are known at all discrete 

points, then the values of 𝜕 at discrete points can be 
calculated from the following discrete version of (5). 

 
𝜕𝑖𝑛 = −2𝜈

𝐷𝜙𝑖𝑛

𝜙𝑖𝑛
                                                (29) 

 
 

 

11 Relative error 
 
We compute the relative error in 𝐿1 − 𝑎𝑐𝑛𝑛 defined by  
 
�|𝑒|�

1
≔

�|𝑢𝑒−𝑢𝑛|�1
�|𝑢𝑒|�1

  
 

for all time 𝜕 = 0 to 𝜕 = 5, where 𝜕𝑒 is the exact solution and 
𝜕𝑛 is the numerical solution computed by our proposed 
method. 
 
After computation of relative errors, we show the 
convergence of each scheme by plotting relative errors for 
different pairs of (ℎ,𝑘). 
 

 
 
Fig. 4. Solution of Burger’s equation  
 

 

 

 

 
 
Fig. 3. Numerical calculation of 𝜙𝑥 for ℎ = 0.1,𝑘 = 0.01, 𝜈 = 0.1 
 

Fig. 2. Numerical solution of diffusion equation using an 
explicit/implicit scheme with h = 0.1, k = 0.01  and ν = 0.1 at different 
times 
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12  Conclusion 
When we solve Burger’s equation by applying an 

explicit scheme directly, then the stability condition also 
depends on value of 𝜈 and if we use implicit scheme 
directly then numerical stability reduces as 𝜈 decreases[11].  

Due to these drawbacks of direct use of explicit and 
implicit scheme on non-linear burger’s equation[11], we 
first transformed non-linear burger’s equation to linear 
heat/diffusion equation and applied explicit/implicit 
scheme on that diffusion equation. When we solve heat 
equation using explicit scheme, stability condition doesn’t 
depend on 𝜈, so we can consider also small values of 𝜈 and 
also if we solve heat equation using implicit scheme, then 
we don’t need to consider any stability condition.   
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Fig. 6. Convergence of relative errors to zero when we use implicit 
scheme in solving heat equation 
 

 

 
Fig. 5. Convergence of relative errors to zero when we use explicit 
scheme in solving heat equation 
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